Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
The set Q consists of the following terms:
h2(f1(x0), x1)
g2(x0, x1)
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G2(x, y) -> H2(x, y)
H2(f1(x), y) -> G2(x, y)
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
The set Q consists of the following terms:
h2(f1(x0), x1)
g2(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
G2(x, y) -> H2(x, y)
H2(f1(x), y) -> G2(x, y)
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
The set Q consists of the following terms:
h2(f1(x0), x1)
g2(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be strictly oriented and are deleted.
H2(f1(x), y) -> G2(x, y)
The remaining pairs can at least by weakly be oriented.
G2(x, y) -> H2(x, y)
Used ordering: Combined order from the following AFS and order.
G2(x1, x2) = G1(x1)
H2(x1, x2) = H1(x1)
f1(x1) = f1(x1)
Lexicographic Path Order [19].
Precedence:
f1 > [G1, H1]
The following usable rules [14] were oriented:
none
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G2(x, y) -> H2(x, y)
The TRS R consists of the following rules:
h2(f1(x), y) -> f1(g2(x, y))
g2(x, y) -> h2(x, y)
The set Q consists of the following terms:
h2(f1(x0), x1)
g2(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.